Abstract

Due to the importance of bio-convection in biotechnology and various biological systems, scientists have made significant contributions in the current decade. This study intends to elaborate the investigation of the bio-convection flow in MHD Prandlt nanofluid with gyrotactic motile microorganism. Owing to engineering and industrial applications, the augmentation of dynamism by the insertion of nanoparticles is a prominent issue in the twenty-first period. The Arrhenius law and activation energy are also considered. The boundary layer approximations developed the governing flow equations such as momentum, energy, concentration and microorganisms equations. The non-linear coupled PDEs are converted to non-linear ODES with the help of similarity transformations. A couple of transmuted equations with modified boundary conditions are elucidated with the employ of the BVP4C via Matlab software. The behavior of different parameters on fluid motion, energy equation, concentration, and motile microorganisms are also discussed through graphical illustrations. It is analyzed that the heat transfer is improved by magnetic field while velocity field is diclines. Concentration and density performance improvises on thermophoretic and Brownian motion impact. Microorganisms field is decline with increasing the Peclet number and bioconvection Lewis number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.