Abstract

AbstractConsidering the ongoing process of diversification of the types of energy production, especially those from renewable sources, one of the goals of sustainable development has become the cleanest energy production, and the monitoring and modeling of the operating parameters is a topic of great interest for researchers in the field. Thus it became an imperative condition to promote the production of electricity from renewable sources in order to support the environmental protection movement but also to obtain an energy independence. The cogeneration process is one of the solutions for obtaining energy from renewable sources because it efficiently energizes the production system by obtaining thermal and electrical energy using the same quantity of fuel. Given that biomass is the primary energy source, it is clear that it is a clean energy source. This chapter presents a factory for the production of electricity and heat in Romania, which was put into operation in 2014. Its analysis will be done by mathematical modeling of the energy consumption (biomass and biogas) necessary for the operation. Also, the most important of a biomass-based power plant, precisely the electrical output of energy, the technological usage, and the electrical energy supplied to the national distribution grid are analyzed. The result consists of and an approximation model linking factors like the biogas consumption to the electrical energy output. In Sects. 2, 3 and 4 of this chapter, the authors describe the structure of a cogeneration power plant (CPP) and introduce an example through a case of study of the data acquisition system for the CPP’s parameters and propose some numerical approaches for the evaluation of the CPP efficiency. The CPP analyzed in this chapter is in Suceava County, Romania, and when it first started production, in 2014, it was the biggest running on biomass cogeneration plant in the country. The chapter includes a description of the three distinct phases of the technological process of obtaining energy from biogas, starting with the type and quantities of the raw materials used and how much energy the CPP can produce. The data acquisition system is part of a sophisticated automated system called “DIANE,” which permanently monitors, coordinates, and controls all the operations in the cogeneration power plant. Following the measurement of many parameters, the analysis focuses on electrical energy production due to each generator, biogas consumption of motors, domestic electricity consumption, and the power consumption required to operate the biogas station. The acquisition of the operating parameters from the last three years continued with the application of a numerical method of interpolation, based on the PYTHON software environment. Consequently, the authors obtained the relationship between the electrical energy output and the consumed biomass input parameters in the form of polynomial functions. The chapter ends with conclusions and many references on the topic of numerical approaches to the biomass plant technological process and overall efficiency.KeywordsCogeneration power plantBiomassBiogasCogeneration engineEfficiencyNumerical approaches model

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.