Abstract

This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of a single bi-component mannitol-water droplet in air. For spherically symmetric droplets, the problem is described mathematically by the unsteady, one-dimensional conservation equations of mass and energy. The effect of the formation of a solid layer at the droplet surface on the droplet evaporation and thermal diffusion rate is included in the present approach. The simulations are validated by comparison with experiments using acoustically levitated droplets. The study includes initial droplet diameters varying from 350 to 450 μm, gas temperatures ranging from 80 to 120 °C, and the initial mannitol mass fraction inside the droplet varies from 0.05 to 0.15. The numerical results are analyzed to identify the occurrence of solid layer formation, and the temporal evolutions of both the droplet size and mass are presented. A parameter study of the initial gas temperature, the initial droplet size, and the initial mannitol mass fraction inside the droplet on droplet evaporation and solid layer formation is presented. The present model accurately captures the initial stages of droplet drying under all conditions investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.