Abstract

We performed experimental and numerical studies of combined effects of thermal buoyancy and magnetization force applied on a cubical enclosure of a paramagnetic fluid heated from below and cooled from top. The temperature difference between the hot and cold wall was kept constant. After considering neutral situation (i.e. a pure natural convection case), magnetic fields of different intensity were imposed. The magnetization force produced significant changes in flow (transition from laminar to turbulent regimes), wall-heat transfer (enhancement) and turbulence (turbulence structures reorganization). The strong magnetic field and its gradients were generated by a superconducting magnet which can generate magnetic field up to 10 T and where gradients of the magnetic induction can reach up to 900 T2/m. A good agreement between experiments and numerical simulations was obtained in predicting the integral wall heat transfer over entire range of considered working parameters. Numerical simulations provided a detailed insights into changes of the local wall-heat transfer and long-term time averaged first and second moments for different strengths of the imposed magnetic induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.