Abstract

Plate impact expeiments are conducted to investigate the dynamic behavior of alumina by using one stage light gas gun. A velocity interferometer system for reflectors (VISAR) is used to obtain Hugoniot elastic limit and the free surface velocity profile, which consists of an elastic wave followed immediately by a dispersive inelastic wave. The stress histories under different impact velocities are measured by in-material manganin gauges. Based on the experimental data a Hugoniot curve is fitted, which shows the compressive characteristics that alumina changes typically from elastic to “plastic”, and under higher pressure it will be transferred to similar-fluid state. The turning point of the Hugoniot curve from a high pressure region to a low pressure region is about 11.4 GPa. The fracture process of alumina is simulated by way of finite element code. After the analysis of the fracture mechanism, the numerical results show an important role played by the nucleation and the growth of the cracks in the macroscopic fracture of the alumina target. The numerical predictions of stress histories are compared with the experimental results, which indicates consistency between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.