Abstract

Heat transfer of fluids is very important to many industrial heating or cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by enhancing the thermal conductivity of the working fluids. An innovative way of improving the fluid thermal conductivity is to introduce suspended small solid nanoparticles in the base fluids. In this paper a numerical investigation on laminar forced convection flow of a water–Al2O3 nanofluid in a duct having an equilateral triangular cross section is performed. The hydraulic diameter is set equal to 1.0×10−2 m. A constant and uniform heat flux on the external surfaces has been applied and the single-phase model approach has been employed. The analysis has been run in steady state regime for a nanoparticle size equal to 38 nm, considering different volume particle concentrations. The CFD code Fluent has been employed in order to solve the tri-dimensional numerical model. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors in pure water are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.