Abstract

The effect of carbon monoxide addition on soot formation in an acetylene/air premixed flame was investigated by detailed numerical simulation. This work focused on both the temperature effect and chemical effect of carbon monoxide addition on soot formation by comparing the results of flames with different CO contents. We find that the addition of carbon monoxide consistently reduces the formation of soot. The soot volume fraction and nucleation rate increase until a threshold temperature is reached and then decrease as the temperature increases. Considering that soot formation took place at the active site by H-abstraction mechanism, the addition of CO promotes the formation of soot. The concentration of H radicals increases and the concentration of OH radicals decreases because of the increased forward rate of the reaction OH+CO=CO2+H. For soot formation to occur by the C-addition mechanism, the degradation rates of C2H2 tends to decrease and this promotes the formation of soot along with CO addition. On the other hand, the addition of CO may greatly reduce the volume fraction of C2H2 in fuel resulting in a lower surface growth rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.