Abstract

A silicon-based horizontal multiple-slotted waveguide with slanted sidewalls is analyzed by using a full-vectorial mode solver based on the finite element method. The results show that the mode classification of the present waveguide structures is different from that of the conventional ones (e.g., typical rib waveguides, optical fibers), both symmetric and anti-symmetric fundamental (and higher-order) quasi-TE and quasi-TM modes exist due to the strong coupling of high-index silicon layers. The field distributions, effective indexes, and optical field confinement factors, both in quasi-TE and quasi-TM modes, as functions of the top width and sidewalls angle of the waveguides, and the refractive index and thickness of the slots are investigated in detail, where the single-mode regime, non-birefringence condition, and maximum optical confinement factor are obtained. From the numerical results, a single-mode waveguide structure for fundamental symmetric quasi-TM modes with the power confinement factor of 80% and the normalized power density of 120μm−2 is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.