Abstract

In this work, a three-dimensional CFD model for the gas–solid flow of two different particle sizes in a CFB riser coupled with a kinetic theory (KT) has been developed. The properties of the solid phases are calculated using the proposed multi-particle kinetic theory. The CFD model is implemented in the commercial CFD software CFX4.4. In the current model, one gas phase and two solid phases are used. However, the model is generalised for one carrier phase and N number of solid phases to enable a realistic particle size distribution in the system. The momentum, volume fraction and granular temperature equations are solved for each individual solid phase and implemented into the CFD model through user-defined functions (UDFs). The k-ε turbulence model is used in simulating the circulating fluidised bed model. For verification, simulation results obtained with the new KT model were compared with experimental data, and then the model was used for further analysis. It was found that the proposed multi-particle model can be used to calculate the properties of gas–solid systems with particles of different sizes and/or densities, removing the assumptions of previous models that required all the particles to be of an equal mass, size and density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.