Abstract

In recent years, various methods to decrease carbon dioxide emissions from iron and steel making industries have been developed. The latest blast furnace operation design is intended to induce the low reducing agent operation, highly reactive material is considered a promising way to improve reaction efficiency. Another method utilizes hydrogen in the blast furnace process for highly efficient reduction. Mathematical modeling may help to predict complex in-furnace phenomena, including momentum, heat, and mass transport. However, the current macroscopic continuum model gives no information on the individual particles. In this work, a new approach based on the discrete element method was introduced to consider the interaction between particles under fluid flow in accordance with the arrangement and properties of individual particles. We used an Euler–Lagrange method to precisely understand the influence of the reaction conditions on the behavior of coke and ore particles in three dimensions. The heterogeneity of the reaction rate and temperature distribution was observed to be influenced by the particle arrangement. The endothermic and exothermic reactions influenced each other in the packed bed. Temperature distributions nearly correlated with the gas velocity distribution because convection processes greatly affected the reaction rate. Although convection heat transfer was not a dominant issue in the packed bed, promotion of the reaction by a gas flow was effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.