Abstract
In the modern building construction, openings in beams are necessary to accommodate several service pipes and ducts. Due to these openings, high stress concentration occurs at its edges. Local cracks also appear around the openings as a result of the reduction in the beam stiffness, the load carrying capacity and the shear capacity. There are many studies which were conducted to develop and test different strengthening methods for the beams opining to increase the ultimate load capacity of the beams. However, from a practical point of view, it is better to have one strengthening method having the same specifications to be used in both; shear and flexural zones for circular opining beams in buildings. In spite of the prior studies, no study has addressed this issue; therefore, there is a need to study such a case. In this paper, an analytical study was conducted to investigate the behavior of the reinforced concrete (RC) beams with circular openings in flexural and shear zones strengthened by steel plates. A 3D FE modeling (ABAQUS 6.12) software was used to simulate five different specimens of RC beams. The study results showed that when the openings were strengthened by steel plates, the ultimate load carrying capacity increased, but the deflection was decreased when compared to the openings without strengthening. In addition, the model reliability was verified via good agreements between the experimental and numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.