Abstract

Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.