Abstract

The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.