Abstract

The existence and the basic features of nucleus-acoustic (NA) envelope bright and dark solitons in a degenerate quantum plasma system (DQPSs) (containing non-relativistically degenerate nuclei and inertialess ultra-relativistically degenerate electrons and positrons), have been theoretically investigated by deriving the nonlinear Schrödinger (NLS) equation. The reductive perturbation method, which is valid for a small but finite amplitude limit, is employed. The plasma parametric regimes for both modulationally stable and unstable NA waves (NAWs) are observed. It is found that the growth rate of the modulationally unstable NAWs is significantly modified by the number density of nucleus species. It is also observed that the modulationally stable (unstable) NAWs give rise to stable dark (bright) envelope solitons. The implications of our results obtained from our present investigation in astrophysical and laboratory DQPSs are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.