Abstract

The explosion of a white dwarf of mass 1.36 M ⊙ has been simulated in three dimensions with the aid of a SPH code. The explosion follows the delayed detonation paradigm. In this case the deflagration-detonation transition is induced by the large corrugation of the flame front resulting from Rayleigh-Taylor instability and turbulence. The nucleosynthetic yields have been calculated, showing that some neutronized isotopes such as 54 Fe or 58 Ni are not overproduced with respect to the solar system ratios. The distribution of intermediate-mass elements is also compatible with the spectra of normal SNIa. The exception is, however, the abundance of carbon and oxygen, which are overproduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.