Abstract

Human lung adenocarcinoma cells develop bipolar shape with prominent pseudopodia (greater than or equal to 200 microns) when cultured in the presence of autocrine motility factor (AMF)-like substance or on fibronectin-coated substrata. AMF was partially purified from a human lung adenocarcinoma cell line and has a peak biological activity at a molecular mass of 67 kDa. Using time-lapse photography, we observed that during AMF- or fibronectin-induced cell translocation, the nuclei of some bipolar cells are transported to the opposite end of the cell, while gross cell shape and position remain unchanged. Following this nuclear movement, which we call "nucleokinesis," the posterior pseudopodium is retracted behind the nucleus. Thus, extension of a pseudopodium followed by nucleokinesis in the same direction and retraction of the cell body behind the nucleus is a normal motile sequence in translocating bipolar cells. This suggests that nucleokinesis is a distinct step in whole-cell translocation of bipolar cells on biological substrata and that pseudopodia can be used as nuclear transport organs. In contrast, adenocarcinoma cells cultured on artificial substrata and in the absence of AMF display a fibroblast-like motility pattern with the nucleus centrally located within the migrating cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.