Abstract

In situ tissue repair holds great potential as a cell-free regenerative strategy. A critical aspect of this approach is the selection of cell instructive materials that can efficiently regulate the defect microenvironment via the release of chemoattractant factors to mobilize and recruit endogenous stem cells toward the site of implantation. Here we report the design of a DNA-based hydrogel as a drug delivery platform for the sustained release of a promising chemoattractant, SDF-1α. The hydrogel is composed of chemically cross-linked DNA strands, which are bridged via silicate nanodisks (nSi). Silicate nanodisks electrostatically interact with the negatively charged DNA backbone resulting in the formation of a dual cross-linked nanocomposite hydrogel with a combination of chemical and physical cross-link points. The formulated nanocomposites display enhanced elasticity and mechanical toughness as compared to their nonsilicate containing counterparts. Moreover, the electrostatic interaction between nSi and SDF-1α leads to sustained release of the chemokine from the hydrogels. The in vitro bioactivity assays confirm the retention of chemotactic properties of the protein after its release. Overall, the dual cross-linked DNA-based hydrogel platform could be potentially used as a cell-instructive material for the recruitment of host stem cells to guide the process of in situ tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.