Abstract
We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.