Abstract
Proteolytic processing of the amyloid precursor protein (APP) occurs via two alternative pathways, localized to different subcellular compartments, which result in functionally distinct outcomes. Cleavage by a beta-gamma sequence generates the Abeta peptide that plays a central role in Alzheimer's disease. In the case of alpha-gamma cleavage, a secreted neurotrophic molecule is generated and the Abeta peptide cleaved and destroyed. In both cases, a cytosolic APP intracellular domain (AICD) is generated. We have previously shown that coexpression of APP with the APP-binding protein Fe65 and the histone acetyltransferase Tip60 results in the formation of nuclear complexes (termed AFT complexes), which localize to transcription sites. We now show that blocking endocytosis or the pharmacological or genetic inhibition of the endosomal beta-cleavage pathway reduces translocation of AICD to these nuclear AFT complexes. AICD signaling further depends on active transport along microtubules and can be modulated by interference with both anterograde and retrograde transport systems. Nuclear signaling by endogenous AICD in primary neurons could similarly be blocked by inhibiting beta-cleavage but not by alpha-cleavage inhibition. This suggests that amyloidogenic cleavage, despite representing the minor cleavage pathway of APP, is predominantly responsible for AICD-mediated nuclear signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.