Abstract

Sarcoglycan is a membrane-associated protein complex found at the plasma membrane of cardiomyocytes and skeletal myofibers. Recessive mutations of delta-sarcoglycan that eliminate expression, and therefore function, lead to cardiomyopathy and muscular dystrophy by producing instability of the plasma membrane. A dominant missense mutation in the gene encoding delta-sarcoglycan was previously shown to associate with dilated cardiomyopathy in humans. To investigate the mechanism of dominantly inherited cardiomyopathy, we generated transgenic mice that express the S151A delta-sarcoglycan mutation in the heart using the alpha-myosin heavy-chain gene promoter. Similar to the human delta-sarcoglycan gene mutation, S151A delta-sarcoglycan transgenic mice developed dilated cardiomyopathy at a young age with enhanced lethality. Instead of placement at the plasma membrane, delta-sarcoglycan was found in the nucleus of S151A delta-sarcoglycan cardiomyocytes. Retention of delta-sarcoglycan in the nucleus was accompanied by partial nuclear sequestration of beta- and gamma-sarcoglycan. Additionally, the nuclear-membrane-associated proteins, lamin A/C and emerin, were mislocalized throughout the nucleoplasm. Therefore, the S151A delta-sarcoglycan gene mutation acts in a dominant negative manner to produce trafficking defects that disrupt nuclear localization of lamin A/C and emerin, thus linking together two common mechanisms of inherited cardiomyopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.