Abstract

The phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is frequently disrupted in cancer and implicated in multiple aspects of tumor growth and survival. In addition, increased activity of this pathway in cancer is associated with resistance to chemotherapeutic agents. Therefore, it has been hypothesized that PI3K inhibitors could help to overcome resistance to chemotherapies. We used preclinical cancer models to determine the effects of combining the DNA-damaging drug doxorubicin with GDC-0941, a class I PI3K inhibitor that is currently being tested in early-stage clinical trials. We found that PI3K inhibition significantly increased apoptosis and enhanced the antitumor effects of doxorubicin in a defined set of breast and ovarian cancer models. Doxorubicin treatment caused an increase in the amount of nuclear phospho-Akt(Ser473) in cancer cells that rely on the PI3K pathway for survival. This increased phospho-Akt(Ser473) response to doxorubicin correlates with the strength of GDC-0941's effect to augment doxorubicin action. These studies predict that clinical use of combination therapies with GDC-0941 in addition to DNA-damaging agents will be effective in tumors that rely on the PI3K pathway for survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.