Abstract
Segregation Distorter ( SD) is a meiotic drive system in Drosophila that causes preferential transmission of the SD chromosome from SD/SD + males owing to dysfunction of SD + spermatids. The Sd locus, which is essential for distortion, encodes a truncated RanGAP (Ran GTPase activating protein), a key nuclear transport factor. Here, we show that Sd-RanGAP retains normal enzyme activity but is mislocalized to nuclei. Distortion is abolished when enzymatic activity or nuclear localization of Sd-RanGAP is perturbed. Overexpression of Ran or RanGEF (Ran GTPase exchange factor) in the male germline fully suppresses distortion. We conclude that mislocalization of Sd-RanGAP causes distortion by reducing nuclear RanGTP, thereby disrupting the Ran signaling pathway. Nuclear transport of a GFP reporter in salivary glands is impaired by SD, suggesting that a defect in nuclear transport may underlie sperm dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.