Abstract

The structure and solvent (water, methanol, etc.) dynamics of a number of fuel membrane electrode assembly (MEA) samples are studied with nuclear magnetic resonance microimaging with spatial resolution of tens of micrometers. The micrometer-scale inhomogeneity of the samples is observed and confirmed with various weighting methods. In particular, diffusion coefficients at different positions in MEA are clearly differentiated. Furthermore, chemical shift selection imaging enables one to investigate the spatial distribution and dynamics of individual chemical groups. These types of information offer us insights into the working principle of fuel cell and pave the way to in situ studies of operating fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.