Abstract
When molecules move, their nuclei flow. The corresponding quantum observable, i.e., the nuclear flux density, was introduced by Schrödinger in 1926, but until now, it has not been measured. Here the first experimental results are deduced from high-resolution pump-probe measurements of the time-dependent nuclear densities in a vibrating diatomic molecule or molecular ion. The nuclear densities are converted to flux densities by means of the continuity equation. The flux densities are much more sensitive to time-dependent quantum effects than the densities. Applications to the sodium molecule and the deuterium molecular ion unravel four new effects; e.g., at the turns from bond stretch to compression, the flux of the nuclei exhibits multiple changes of directions, from small to large bond lengths, a phenomenon that we call the "quantum accordion."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.