Abstract
Cu4(OH)6SO4 (1) and Cu4(OD)6SO4 (2) were obtained by hydrothermal syntheses from copper sulfate and sodium hydroxide in H2O and D2O, respectively. They crystallize in the monoclinic system, space group P2(1)/a (14), a = 13.1206(5), b = 9.8551(3), c = 6.0295(2) Angstroms, beta = 103.432(3) degrees, V = 758.3(1) Angstroms(3), Z = 4 and a = 13.1187(5), b = 9.8552(3), c = 6.0293(2) Angstroms, beta = 103.410(3) degrees, V = 758.3(1) Angstroms(3), Z = 4, respectively. They are iso-structural to the mineral brochantite and consist of double chains of edge-sharing copper octahedra that are connected to one another by corners to form corrugated planes along bc; these planes are in-turn bridged by the unprecedented mu7-sulfate tetrahedra to give a 3D-structure. All the hydrogen atoms were precisely located from refinement of the neutron powder diffraction data of the deuterated sample. Magnetic susceptibility data reveal a low-dimensional behavior at high temperature and the presence of both ferromagnetic and antiferromagnetic super-exchanges resulting in a 3D long-range antiferromagnetic ordering at 7.5 K accompanied by a small canting of the moments. The transition is confirmed by a lambda-peak in the specific heat. The magnetic structure at 1.4 K shows the moments are oriented perpendicular to the corrugated planes with alternation along +/-a for neighboring chains within the double chains. The enhanced incoherent scattering at low-angle suggests the existence of short-range ferromagnetic clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.