Abstract

A numerical study is presented in this paper to examine the fluid flow in a vertical channel partly filled with porous metallic foams. The physical model comprises of aluminum plate-heater assembly placed in the vertical channel. Heat is carried away by the working fluid air from the plates inside the vertical channel through forced convection. High thermal conductivity metal foams are attached to the heater-plate assembly in order to reduce the temperature of the aluminum plates. Thus, the study pays attention only to the characteristics of fluid flow at different positions of the vertical channel in the presence of metal foams. The present analysis considers the Forchheimer – Extended Darcy equation for the metal foam to predict the fluid flow in conjunction with the local non-thermal equilibrium model for the analysis of heat transfer through the porous metal foams. At first, the methodology applied to the present numerical analysis is validated with the existing results. Upon reaffirming the solution methodology, the results of the metal foam study are then compared with a solid block that replaces the metal foam structure inside the vertical channel. Consequently, as a novel approach, the analysis enables one to arbitrate the tradeoff between the porous metal foam and the solid block for heat transfer augmentation from the plate assembly to the air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.