Abstract
This paper reviews the first challenge on spectral image reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. The challenge was divided into 2 tracks: the "Clean" track sought HS recovery from noiseless RGB images obtained from a known response function (representing spectrally-calibrated camera) while the "Real World" track challenged participants to recover HS cubes from JPEG-compressed RGB images generated by an unknown response function. To facilitate the challenge, the BGU Hyperspectral Image Database [4] was extended to provide participants with 256 natural HS training images, and 5+10 additional images for validation and testing, respectively. The "Clean" and "Real World" tracks had 73 and 63 registered participants respectively, with 12 teams competing in the final testing phase. Proposed methods and their corresponding results are reported in this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.