Abstract
A total domatic k-partition of a graph is a partition of its vertex set into k subsets such that each intersects the open neighborhood of each vertex. The maximum k for which a total domatic k-partition exists is known as the total domatic number of a graph G, denoted by dt(G). We extend considerably the known hardness results by showing it is ▪-complete to decide whether dt(G)≥3 where G is a bipartite planar graph of bounded maximum degree. Similarly, for every k≥3, it is ▪-complete to decide whether dt(G)≥k, where G is split or k-regular. In particular, these results complement recent combinatorial results regarding dt(G) on some of these graph classes by showing that the known results are, in a sense, best possible. Finally, for general n-vertex graphs, we show the problem is solvable in 2nnO(1) time, and derive even faster algorithms for special graph classes.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.