Abstract

A total domatic k-partition of a graph is a partition of its vertex set into k subsets such that each intersects the open neighborhood of each vertex. The maximum k for which a total domatic k-partition exists is known as the total domatic number of a graph G, denoted by dt(G). We extend considerably the known hardness results by showing it is ▪-complete to decide whether dt(G)≥3 where G is a bipartite planar graph of bounded maximum degree. Similarly, for every k≥3, it is ▪-complete to decide whether dt(G)≥k, where G is split or k-regular. In particular, these results complement recent combinatorial results regarding dt(G) on some of these graph classes by showing that the known results are, in a sense, best possible. Finally, for general n-vertex graphs, we show the problem is solvable in 2nnO(1) time, and derive even faster algorithms for special graph classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.