Abstract

The expanded integration of wind energy imposes technical challenges to maintain system reliability. In order to tackle these challenges, comprehensive reliability models for wind turbines and related factors are essential. Proposed algorithm classifies Wind Turbine Generator (WTG) components based on their impact on WTG output. There upon, the WTG has a composite three-state reliability model which aggregates WTG foremost components. The chronological operation conditions of each component is obtained using state duration sampling method. Precise Wind Farms (WFs) reliability assessment requires accurate Wind Speed (WS) forecasting methods which acknowledge WSs propagation through WFs terrains. Thus, WS variations are developed based on Weibull distribution. Offered algorithms are integrated to estimate the capacity factor of some WFs using Monte Carlo simulation method. The implied WS data are recorded in certain locations in Egypt which are candidates to host WFs. The utilized simulation environments are MATLAB and Simulink.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.