Abstract

A novel vaterite-containing tricalcium silicate (V-C3S) was grafted by 3-aminopropyltriethoxysilane (APTES), and the amino groups have been successfully fixed on the vaterite-containing tricalcium silicate powder’s surface (after grafting the amino group, V-C3S was named A-V-C3S). The setting behavior, mechanical properties, porosity, weight loss and anti-washout properties of the tricalcium silicate (C3S), V-C3S and A-V-C3S bone cement were systematically investigated. The in vitro induction of hydroxyapatite (HAp) formation of C3S, V-C3S and A-V-C3S bone cement was confirmed by x-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. The cell viability, cell proliferation and cell attachment were investigated to assess the effects of bone cement on MC3T3-E1 cells. Results showed that the setting time of A-V-C3S bone cement can meet the requirements of a clinical test, with improved anti-washout properties and an appropriate degradation rate. The pH value of the soaking solution was obviously decreased by surface modification. Besides, the morphology and fluorescence photograph results revealed that the A-V-C3S bone cement showed an enhanced biocompatibility effect on the proliferation and attachment of MC3T3-E1 cells. The A-V-C3S bone cement was expected to be a potential bone-substitute material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.