Abstract

In human brains, a series of monoamine-derived 1,2,3,4-tetrahydroisoquinolines and the 6,7-dihydroxy derivatives has been identified. A tetrahydroisoquinoline was found to cause parkinsonism in monkey, but its toxicity was not so potent as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Two metabolic steps were found to increase cytotoxicity of isoquinolines. N-Methylation by a non-specific N-methyltransferase was proved by in vivo and in vitro experiments. The N-methylated compound was oxidized into N-methylisoquinolinium ion by monoamine oxidase from human brain mitochondria. The oxidation was proved by microdialysis in the rat brain. The isoquinolinium ion was more cytotoxic than the two metabolic precursors. N-Methylation of dopamine-derived 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines was detected by in vivo microdialysis in the rat striatum, and their presence in the human brain was confirmed by GC-MS. The metabolic bioactivation may be a general pathway to produce neurotoxins as the pathogenic agents of Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.