Abstract

We discuss in this article the experimental measurements of the molecules in liquid crystal (LC) phase using the time-resolved infrared (IR) vibrational spectroscopy and time-resolved electron diffraction. Liquid crystal phase is an important state of matter that exists between the solid and liquid phases and it is common in natural systems as well as in organic electronics. Liquid crystals are orientationally ordered but loosely packed, and therefore, the internal conformations and alignments of the molecular components of LCs can be modified by external stimuli. Although advanced time-resolved diffraction techniques have revealed picosecond-scale molecular dynamics of single crystals and polycrystals, direct observations of packing structures and ultrafast dynamics of soft materials have been hampered by blurry diffraction patterns. Here, we report time-resolved IR vibrational spectroscopy and electron diffractometry to acquire ultrafast snapshots of a columnar LC material bearing a photoactive core moiety. Differential-detection analyses of the combination of time-resolved IR vibrational spectroscopy and electron diffraction are powerful tools for characterizing structures and photoinduced dynamics of soft materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.