Abstract

Tetragonal and hexagonal hybrid sp3/sp2 carbon allotropes C5 were proposed based on crystal chemistry and subsequently used as template structures to identify new binary phases of the B-N system, specifically tetragonal and hexagonal boron nitrides, B2N3 and B3N3. The ground structures and energy-dependent quantities of the new phases were computed within the framework of quantum density functional theory (DFT). All four new boron nitrides were found to be cohesive and mechanically (elastic constants) stable. Vickers hardness (HV), evaluated by various models, qualified all new phases as superhard (HV > 40 GPa). Dynamically, all new boron nitrides were found to be stable from positive phonon frequencies. The electronic band structures revealed mainly conductive behavior due to the presence of π electrons of sp2-like hybrid atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.