Abstract

Inefficient bone regeneration of self-hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis-stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic-co-glycolic acid) (PLGA) network to fabricate plastic CPC-based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon its degradation. The addition of WS is helpful to improve the attachment, proliferation, and osteogenic differentiation of mouse bone marrow stromal cells in vitro. The in vivo experimental results indicate that PLGA/WS/CPC promotes rapid angiogenesis and bone formation. Therefore, the plastic CPC-based composite cement with a 3D PLGA network and wollastonite shows an obviously improved efficiency for repairing bone defects and is expected to facilitate the wider application of CPC in the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.