Abstract

We describe a strategy for identifying ligands of human leukocyte antigen (HLA) class I molecules based on a peptide library-mediated in vitro assembly of recombinant class I molecules. We established a microscale class I assembly assay and used a capture ELISA to quantify the assembled HLA-peptide complexes. The identity of the bound ligands was then deduced by mass spectrometry. In this method, HLA complexes assembled in vitro in the presence of components of a mixture of peptides were immunoprecipitated and the bound peptide(s) identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. This process of epitope extraction is robust and can be used with complex mixtures containing in excess of 300 candidate ligands. A library of overlapping peptides representing all potential octamers, nonamers and decamers from human preproinsulin was synthesized using unique library chemistry. Peptides from the library were used to initiate assembly of recombinant HLA-B8, HLA-B15 and HLA-A2, facilitating the identification of candidate T-cell epitopes from preproinsulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.