Abstract
Calcium phosphates (CaPs) and silicon containing calcium phosphates (Si-CaPs) coatings on a biodegradable magnesium yttrium alloy (Mg4Y) were prepared by a sol–gel technique to improve the bioactivity of the alloy surface. The experimental results show that thick porous coatings comprised of nano-sized calcium phosphate particles can be prepared by heating the as dip coated substrates at 450 °C. The in vitro degradation results show that the coatings do not alter the degradation kinetics of the substrates significantly and the release of magnesium and yttrium ions at initial time points was very similar for both the coated and bare substrates. The cyto-compatibility studies using MC3T3-E1 osteoblasts show that the coated substrates were more bioactive than the uncoated substrates as the cells begin to grow and form a matrix on the coated substrates more easily than on the bare metal. These preliminary results collectively show the potential of use of sol–gel derived calcium phosphate coatings on magnesium based degradable scaffolds to improve their surface bioactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.