Abstract

We devised two kinds of new methods for accurate measurement of the image signal-to-noise ratio (SNR) in parallel magnetic resonance imaging (MRI) because image noise of the parallel MRI was not spatially constant. Using the first (Consecutive) method, more than fifty consecutive scans of the uniform phantom were obtained with identical scan parameters. Then the SNRs in each pixel were calculated from the ratio of mean signal intensity to the standard deviation of the time domain on a pixel-by-pixel. With the second (Remove) method, the phantom was removed after the first scan, and the second scan was done with identical parameters and the RF coil loading device. The SNRs in each pixel were then obtained from the ratio of the signal intensity of the first scan to the second scan (w/o phantom) image which was multiplied by the square root of 2/pi and filtered by the running mean (7 by 7 pixels). Moreover, actual geometry factors were calculated from image SNRs of parallel and no parallel MRI. The image SNR and actual geometry factor of parallel MRI with the Consecutive method agreed with that of the Remove method. The SNRs of the no parallel MRI with the above two methods conformed with that of the conventional SNR method (NEMA standard). Both new methods make it possible to obtain a more detailed determination of SNR in parallel MRI, and to calculate the actual geometry factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.