Abstract

A low-permittivity organic dielectric, methylsilsesquioxane (MSQ), used as an interlevel dielectric is expected to reduce the parasitic capacitance in integrated circuit. However, MSQ film can be easily degraded during resist ashing after the film is etched with the damascene trenches being created. In this work, a novel sidewall capping technology is developed to solve the degradation issue. Prior to resist ashing, a high-quality, low-permittivity oxide film is selectively deposited onto the sidewalls of MSQ trenches using selective liquid-phase deposition. Experimental results demonstrate that the capping oxide can effectively protect the sidewalls of MSQ trenches from ashing-induced degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.