Abstract

This study proposes self-assembly-induced 3D plotting as an innovative solid freeform fabrication (SFF) technique for the production of macro/nano-porous collagen scaffolds, particularly comprised of nanofibrous collagen filaments. In this technique, collagen filaments deposited in a coagulation bath could be effectively gelled through the self-assembly of collagen molecules into fibrils, accordingly, enabling the 3-dimensional deposition of collagen filaments with a collagen nanofiber network. The unique macro/nano-structure could be structurally stabilized by dehydration process coupled with chemical cross-linking. The porous collagen scaffolds produced had 3-dimensionally interconnected macropores (~ 451×305μm in pore width) separated by nanoprous collagen filaments. In addition, the macro/nano-porous collagen scaffolds showed the tensile strength of~353kPa and compressive strength of~31kPa at a porosity of~95vol% and excellent in vitro biocompatibility, assessed using pre-osteoblast MC3T3-E1 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.