Abstract

A new highly efficient rGO/ZnBi2O4 hybrid catalyst has been successfully synthesized through oxidation-reduction and co-precipitation methods, followed by heating at 450°C. The obtained rGO/ZnBi2O4 catalyst was characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The catalytic activity of rGO/ZnBi2O4 under visible light irradiation was tested using 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution. The rGO/ZnBi2O4 hybrid catalyst containing 2% rGO (2.0rGO/ZnBi2O4) showed the best catalytic performance. More than 90% of 2,4-D in a 30mg/L solution was degraded after 120min of visible light irradiation using 2.0rGO/ZnBi2O4 at 1.0g/L concentration. Moreover, the 2.0rGO/ZnBi2O4 catalyst showed excellent stability over four consecutive cycles, with no significant changes in the photocatalytic degradation rate. This study demonstrated that rGO/ZnBi2O4 may be a promising, low-cost, and green photocatalyst for environmental remediation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.