Abstract

Aim and Objective: Sequence analysis is one of the foundations in bioinformatics. It is widely used to find out the feature metrics hidden in the sequence. Otherwise, the graphical representation of the biologic sequence is an important tool for sequencing analysis. This study is undertaken to find out a new graphical representation of biosequences. The transition probability is used to describe amino acid combinations of protein sequences. The combinations are composed of amino acids directly adjacent to each other or separated by multiple amino acids. The transition probability graph is built up by the transition probabilities of amino acid combinations. Next, a map is defined as a representation from the transition probability graph to transition probability vector by the k-order transition probability graph. Transition entropy vectors are developed by the transition probability vector and information entropy. Finally, the proposed method is applied to two separate applications, 499 HA genes of H1N1, and 95 coronaviruses. By constructing a phylogenetic tree, it was found that the results of each application are consistent with other studies. The graphical representation proposed in this article is a practical and correct method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.