Abstract

The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.