Abstract

Three novel coordination polymers [Pb(bbbm)(2)(NO(3))(2)](n) (bbbm = 1,1'-(1,4-butanediyl)bis-1H-benzimidazole) 1, [Zn(bbbt)(NCS)(2)](n) (bbbt = 1,1'-(1,4-butanediyl)bis-1H-benzotriazole) 2, and [Zn(pbbt)(NCS)(2)](n) (pbbt = 1,1'-(1,3-propylene)bis-1H-benzotriazole) 3 were synthesized and structurally characterized. Polymer 1 exhibits a two-dimensional rhombohedral grid network structure, the dimensions of the grid are 14.274 x 14.274 A, and the diagonal-to-diagonal distances are 24.809 x 14.125 A. Polymer 2 possesses a concavo-convex chain structure different from those of the known one-dimensional polymers, which are linear chain, zigzag chain, helical chain, double-stranded chain, and ladder chain. Polymer 3 exhibits a one-dimensional zigzag chain structure, and these chains were packed as an.ABAB. layered structure. The third-order nonlinear optical (NLO) properties of polymers1, 2, and 3 were determined with a 7-ns pulsed laser at 532 nm. 1 shows strong third-order NLO absorptive and refractive properties, and its alpha(2) and n(2) values were calculated to be 5.8 x 10(-)(9) m W(-)(1) and 4.67 x 10(-)(18) m(2) W(-)(1) in a 3.4 x 10(-)(4) mol dm(-)(3) DMF solution, respectively. Both 2 and 3 exhibit weaker NLO absorption and strong refractive properties, and their n(2) values are 4.53 x 10(-)(18) m(2) W(-)(1) for 2 in a 5.2 x 10(-)(4) mol dm(-)(3) DMF solution and 3.02 x 10(-)(18) m(2) W(-)(1) for 3 in a 4.35 x 10(-)(4) mol dm(-)(3) DMF solution. The chi((3)) values of 1, 2, and 3 were calculated to be 1.67 x 10(-)(11), 1.62 x 10(-)(11), and 1.08 x 10(-)(11) esu, respectively, and the values are larger than those of the reported coordination polymers. We deduce that the valence shell structures of metal ions may have some influence on the strength of NLO properties, and discuss the relationships between the crystal structures of coordination polymers and the observed NLO properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.