Abstract

A novel graphite material for lithium ion batteries was prepared by encapsulation of an ionic conductive polymer on the surface of natural graphite particles via radiation-initiated polymerization. The graphite obtained shows great improvement in electrochemical performance such as initial coulombic efficiency and cycleability compared with the original natural graphite. Raman spectroscopy indicates that the structural stability of the graphite surface is enhanced due to the fact that encapsulated polymers can depress the exfoliation of graphite layers caused by co-intercalation of solvent molecules. The solid electrolyte interface (SEI) film formed on the encapsulated graphite electrode retains a stable morphology during repeated cycling, and thus avoids an increase in the electrode's impedance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.