Abstract
Enhancing human-robot interaction has been a primary focus in robotic gait assistance, with a thorough understanding of human motion being crucial for personalizing gait assistance. Traditional gait trajectory references from Clinical Gait Analysis (CGA) face limitations due to their inability to account for individual variability. Recent advancements in gait pattern generators, integrating regression models and Artificial Neural Network (ANN) techniques, have aimed at providing more personalized and dynamically adaptable solutions. This article introduces a novel approach that expands regression and ANN applications beyond mere angular estimations to include three-dimensional spatial predictions. Unlike previous methods, our approach provides comprehensive spatial trajectories for hip, knee and ankle tailored to individual kinematics, significantly enhancing end-effector rehabilitation robotic devices. Our models achieve state-of-the-art accuracy: overall RMSE of 13.40 mm and a correlation coefficient of 0.92 for the regression model, and RMSE of 12.57 mm and a correlation of 0.99 for the Long Short-Term Memory (LSTM) model. These advancements underscore the potential of these models to offer more personalized gait trajectory assistance, improving human-robot interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.