Abstract

For over 3 decades, investigators have studied the pathogenesis of vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) through clinical studies and animal models. While there was considerable consensus that susceptibility was not associated with any apparent deficiencies in adaptive immunity, protective immune mechanisms and the role of innate immunity remained elusive. It was not until an innovative live-challenge design was conducted in women that a fuller understanding of the natural history of infection/disease was achieved. These studies revealed that symptomatic infection is associated with recruitment of polymorphonuclear neutrophils (PMNs) into the vaginal lumen. Subsequent studies in the established mouse model demonstrated that infiltrating PMNs were incapable of reducing the fungal burden, which supported the hypothesis that VVC/RVVC was an immunopathology, whereby Candida and the host response drive symptomatic disease. Further studies in mice revealed the requirement for C. albicans hyphae and identified pattern recognition receptors (PRRs) and proinflammatory mediators responsible for the PMN response, all of which are critical pieces of the immunopathogenesis. However, a mechanism explaining PMN dysfunction at the vaginal mucosa remained an enigma. Ultimately, by employing mouse strains resistant or susceptible to chronic VVC, it was determined that heparan sulfate (HS) in the vaginal environment of susceptible mice serves as a competitive ligand for Mac-1 on PMNs, which effectively renders the PMNs incapable of binding to Candida to initiate killing. Hence, the outcome of symptomatic VVC/RVVC is postulated to be dependent on a PMN-mediated immunopathogenic response involving HS that effectively places the neutrophils in a state of functional anergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.