Abstract

Conducting cells of the heart and nerve cells of the brain are having the ability to generate and transmit electrical signals. Recording of neural signals became an important research issue for better analysis and better control of neurological functions by using implantable devices. In neural recording systems, the most critical part is the power constraint neural amplifier. The major challenges of neural front ends are low power dissipation and low input-referred noise. This work describes a low-noise amplifier that uses Metal Oxide Semiconductor bipolar pseudo-resistor elements to amplify signals from 0.03 millihertz to 8.4 kilohertz. This design is suitable for neurodegenerative disorders like Parkinson's disease and Alzheimer's. This topology reduces major noise in low-frequency circuits. By choosing input devices as PMOS transistors and also by properly sizing the devices, flicker noise is reduced. Noise and power trade-off is quantified by calculating noise efficiency factor (NEF) which is improved by using the proposed design. The circuit is implemented in 180 nm technology and is operated with a dual power supply range of ±2.5V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.