Abstract

Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson’s disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease. These co-loaded vesicles were prepared using a saturated phospholipid and structurally related cationic or analogue N-oxide surfactants and showed different properties, based on their composition. In particular, ex-vivo permeability tests using porcine nasal mucosa were performed, denoting that subtle variations of the lipids structure can significantly affect the delivery of LD to the target site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.