Abstract

ABSTRACTPurpose/Aim: The most common kidney stone composed of calcium oxalate forms on interstitial calcium phosphate mineral known as a Randall’s plaque (RP). Due to limited information about events leading to the initial deposition of nanometer size interstitial calcium phosphate pre-clusters, there continues to be a debate on the initial site of calcium phosphate deposition and factors leading to stone formation. Materials and Methods: High-resolution X-ray micro-computed tomography (CT), and light and electron microscopy techniques were used to characterize human renal pyramids and five representative kidney stones with identifiable stems. Mineral densities of mineralized aggregates within these specimens were correlated with micro- and ultra-structures as seen using light and electron microscopy techniques. Results: The earliest detectable biominerals in the human renal papilla were proximal intratubular plate-like calcium phosphate deposits. Unoccluded tubules in stems connected to calcium phosphate stones were observed by electron microscope and X-ray micro-CT. These tubules were similar in diameter (30–100 μm) and shape to those observed in the distal regions of the renal papilla. Conclusions: Observations were patterned through a novel and unified theory of stepwise-architecture guided biomineralization (a combination of smaller structures leading to a larger but similar structural framework). A plausible stepwise progression in renal biomineralization is proposed; proximal intratubular calcium phosphate deposits can lead to interstitial yet calcium phosphate rich RP and mature into a stem on which a calcium oxalate stone grows within the collecting system of a kidney.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.