Abstract

Great attention is currently being paid to the application of non-thermal plasma in agriculture. Seed germination is the first and critical time in the life cycle of each plant. Cold atmospheric pressure plasma (CAPP) generated by Diffuse Coplanar Surface Barrier Discharge, working at atmospheric pressure in ambient air, oxygen or nitrogen atmosphere in different time applications (60, 180, 300 s) was used to investigate its influence on early stages of germination processes in pea (Pisum sativum L. cv. Prophet). For evaluation of physiological parameters germination, the imbibition rate, percentage of germination, germination potential, germination index, seeds and seedlings vitality index, and seedlings length index were determined. In this work, also CAPP influence on dehydrogenases and lytic enzymes (amylase, glucanase and protease) as well as genotoxic effects were studied. Infrared spectra of pea seeds surface demonstrate that reactive oxygen and nitrogen species as well as UV radiation produced in plasma cause oxidation of lipids and polysaccharides on the surface of samples and lead to increase of wettability related to increased imbibition which can accelerate germination. A significant positive effect had mainly CAPP generated in air and nitrogen atmosphere at treatment time of 60 s on the studied germination and growth parameters and overall activation of lytic enzymes in pea seeds compared to untreated control. Increased concentrations of radicals in young 3-day old seedlings and activation of antioxidant enzymes suggest that low plasma doses act as low stress, which paradoxically has a stimulating effect on germination, growth and development of seedlings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.